## MANAGING WATER RESOURCES IN AGRICULTURE: OPPORTUNITIES FROM EARTH OBSERVATION

**GIRIRAJ AMARNATH** 

#### Contributors: Bharat Sharma, Vladimir Smakhtin, Ameer Rajah, Niranga Alahacoon, Paul Pavelic

International Water Management Institute (IWMI)

India Geospatial Forum, Hyderabad Convention Centre. 6 February 2013





RESEARCH PROGRAM ON Water, Land and Ecosystems

International Water Management Institute

Water for a food-secure world



# IWMI's 6 key challenge areas



### **EVERYTHING IS VARIABLE, WATER - TOO**





Water for a food-secure world

## **INDIA: WATER AND FOOD CHALLENGES**

- Indian Food Security is Precariously Hinged on Very High Productivity from Relatively Small and Water Stressed Regions. Vast Areas have Low Land and Water Productivity.
- <u>Groundwater</u> is Now the Dominant Means of Indian Irrigation- But is Presently Ungoverned, Under-financed, Challenged by Energy-Irrigation Nexus and under Severe Stress.
- <u>Rainfed Agriculture</u> has an Extremely Low, Variable and Vulnerable Productivity and Cries for an Immediate Small-Water-Based Turn-Around.
- <u>Climate Change</u> may have Serious Impact on Water Resources, Water Related Hazards and thus on both Rainfed and Irrigated Agriculture Productivity.



Water for a food-secure world



### WATER VARIABILITY INCREASES WATER SCARCITY



**Mean Annual Precipitation (MAP)** 

**Coefficient of Variation (CV) of MAP** 

Source: Smakhtin and Schipper, 2008



Water for a food-secure world



#### WHEAT YIELD MAP IN IG BASIN



vast population- and is under serious hydrological threat.



Water for a food-secure world



### WATER PRODUCTIVITY MAPS

Rice productivity (kg/m<sup>3</sup>)





Water for a food-secure world



### WATER VARIABILITY MANIFESTS ITSELF IN DROUGHT AND FLOOD DAMAGES



Average annual characteristics over 1980-2008

Source -EM-DAT: The OFDA/CRED International Disaster Database, Brussels



Water for a food-secure world



## VARIABILITY MANAGEMENT MUST RECEIVE MUCH MORE SCIENCE, POLICY AND INVESTMENT ATTENTION

- Better quantification of variability hot spots, risks and extent
- Harnessing satellite data in managing variability and improving agriculture-water management
- Conjunctive management of floods and droughts in river basins through subsurface solutions (vs. just surface ones)



Water for a food-secure world



### **IDENTIFY AND QUANTIFY HOT SPOTS**





#### Water for a food-secure world



### **QUANTIFY RISK AND EXTENT**



Source: Amarnath et al, 2012

#### 8-days maps of inundation extent





#### Water for a food-secure world



## **SOUTH ASIA PRODUCTS**







| Country    | Flood Affected<br>Area | Area (sqkm) | Percent<br>Area |
|------------|------------------------|-------------|-----------------|
| Bangladesh | 69,025.93              | 147,570     | 46.78           |
| India      | 135,568.18             | 3,287,240   | 4.12            |
| Nepal      | 1,442.34               | 147,181     | 0.98            |
| Pakistan   | 97,057.15              | 796,095     | 12.19           |
| SriLanka   | 838.27                 | 65,610      | 1.28            |

### **Flood Duration : Indus Basin, Pakistan**



- Duration of annual flood inundation is defined from the start and end dates of annual flood inundation
- Longer flood duration significantly increase the flood risk damage



#### **ONLINE DROUGHT MONITORING SYSTEM FOR SW ASIA: FRONT PAGE**

### http://dms.iwmi.org



#### ONLINE DROUGHT MONITORING SYSTEM FOR SW ASIA DISTRICT VIEW - NDVI





#### Harnessing the power of satellite data in Flood Irrigation Mapping & Modeling (Eastern Sudan)

Canal Uptake and Sorghum flowering in Gash Delta, Sudan

## **RESEARCH COMPONENTS**







Water for a food-secure world



## **OPERATIONAL FLOOD INUNDATION MAPPING** (MODIS + Landsat Images)







#### Water for a food-secure world



### **OPERATIONAL BIOMASS PRODUCT**



Raw DMC satellite data for 21-11-2012 (L), and derived daily evapotranspiration (M) and biomass production (R)







Water for a food-secure world



## DEVELOPMENT OF FLOOD FORECASTING SYSTEM HEC HMS+RAS

Basin Characteristics 25 sub-basin Watershed ~20,000km<sup>2</sup> 12 river segments

#### Model Inputs

5 raingauges (Ethiopia) El Gera flow data (GRTU) TRMM, RFE, CMORPH SRE Data DEM, LULC, FAO Soil Data

#### **HMS Parameters**

Loss (SCS Curve Number) Transform (SCS Unit Hydrograph) Baseflow (Constant Monthly) Routing (Muskingum)









#### Water for a food-secure world



#### From pixels....to information....to simple action messages











#### Water for a food-secure world



UTF-I desktop case study: Chao Phraya basin, Thailand (Source: Pavelic et al, 2012)

- Harvest water only in very wet years approximately 1 year in 4
- Around 200 km<sup>2</sup> land dedicated to flood harvesting may be needed (< 1% of the total basin area)
- Additional 65,000- 270,000 ha of irrigation possible
- \$150 mill / year mean income to smallholder farmers
- Cost of implementation < \$ 1 Bill. Payback time can be 7 -14 years, depending on the efficiency of the scheme
- Farmers' participation is critical
- No analogs so far exist



Water for a food-secure world



Current Climate – Dry Season



Current Climate – Wet Season



Future Climate - Wet Season



Underground Taming of Floods for Irrigation (UTF-I);

Wet season



Underground Taming of Floods for Irrigation (UTF-I);

Dry season



## **CONJUNCTIVE FLOOD AND DROUGHT MANAGEMENT** UTF-I desktop case study: Chao Phraya basin, Thailand

(Source: Pavelic et al, 2012)

Land Use

Alluvium aquifers

UTFI in plan view



## **KEEPING VARIABILITY ?**

- Variability has positive effects too, e.g. the range of high and low flows, their proper timing and frequency is needed to ensure a healthy river
- The challenge is to alleviate negative aspects of variability, while maintaining its positive side



Water for a food-secure world



## **Capacity Development & Partnership**











